
 1

DYNAMIC PETRI-NETS: A NEW MODELING TECHNIQUE FOR THE
TOPOLOGY OF DISTRIBUTED SENSOR NETWORKS

Dr. Charles J. Graff
 US Army CERDEC

 Ft. Monmouth NJ 07703

ABSTRACT

This paper introduces and describes a new extension to
Petri-Nets that provide additional mechanisms for the
modeling of dynamic, distributed and concurrent
behavior. The extensions provide for the creation and
destruction of conventional Petri-Net Places and
Transitions providing dynamic behavior of Petri-Net
operation. We call this new Petri-Net model Dynamic
Petri-Nets (DPN). With this new model, the structure of
the Petri-Net, i.e. the interconnection of Places and
Transitions, will evolve over time. The paper introduces
specific rules for the Place/Transition modifications, and
presents some new and well known properties of Petri-
Nets under these modifications. A Many Sorted
Algebraic model of the DPN is presented that formally
describes the techniques and relationships presented
informally. Finally, an example of the use of these
extensions is presented to represent the broadcast nature
of mobile ad hoc and distributed sensor networks.

1. INTRODUCTION

In mobile ad hoc networks and sensor networks, it is
critical to accurately represent dynamic behavior in a
precise and rigorous fashion. The dynamic behavior
includes not only state change, but also changes in
structure. A number of mathematical techniques have
been developed over the years to address this problem,
including finite state machines and Petri-Nets, but they
have focused primarily on the representation of state
change.

Finite state machines have addressed the problem of
representation dynamic behavior only through a change
in state. The mathematical model of a finite state
machine includes a finite set of states and a set of arcs
interconnecting those states, a set of inputs, a set of
outputs, and a unique start state and a set of end of
terminating states. While both deterministic and non-
deterministic state machines have been studied, it is well
known that every non-deterministic state machine has an
equivalent deterministic finite state machine, and hence
provides no further increase in dynamic representation.
The change in state is driven by some input stimulus

which may cause a state change and generate some
output.

Petri-Nets were first created by Carl Petri in his
dissertation “Kommunikation mit Automaten” in 1962.
Petri-Nets are essentially bi-partite directed graphs,
where the nodes are called either a Place or a Transition.
A Place is similar to a state in a classic finite state
machine, while a Transition is a representation of some
type of action or activity. Entities called Tokens, which
are typically integers, are assigned to Places, and,
“move” through the Petri-Net from Place to Place under
the action of Transition firing or executing. A set of
specific rules govern the firing or execution of a
Transition, and hence the movement of Tokens from
Place to Place. Petri-Nets have the ability to represent
synchronization, concurrency and non-determinism.
While finite state machines and conventional Petri-Nets
represent the concept associated with a change of state,
they are very limited in their ability to represent changes
in structure, and to represent those structural changes as
an explicit function of time.

2. PROBLEM STATEMENT

The main technical challenge is to find a way to
represent the structural changes of network behavior,
consistent with the conventional representation of
dynamic state change, synchronization, concurrency,
non-determinism. The representation must be
mathematically based and explicitly represent timed
structural behavior.

This research creates and develops a new extension to
Petri-Nets that provide additional mechanisms for the
modeling of dynamic distributed and concurrent
behavior. We call this new type of Petri Net a Dynamic
Petri-Net (or DPN). The extensions provide for the
creation and destruction of both conventional Petri-Net
Places and Transitions through the dynamic behavior of
Petri-Net operation. Thus the structure of the Petri-Net,
i.e. the interconnection of Places and Transitions, may
evolve over time. Thus the DPN can represent both
structural change, as well as conventional state change
(as represented by different Markings). It is anticipated
that this work will support ongoing research efforts in

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 NOV 2006

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Dynamic Petri-Nets: A New Modeling Technique For The Topology Of
Distributed Sensor Networks

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
US Army CERDEC Ft. Monmouth NJ 07703

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM002075., The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

 2

Network Science (National Research Council 2005). In
order to add the proper context, we first review
conventional Petri-Nets.

3. REVIEW OF CONVENTIONAL PETRI-

NETS

A conventional Petri-Net is represented as a 4-tuple:

PN = (P, T, A, M)

where

P is a finite set of distinct Places, where each Place
may contain zero or more integer Tokens,

T is a finite set of distinct Transitions, (which are in
effect Boolean functions)

A is a set of directed and optionally weighted edges,
whose members are represented by the ordered pair (p,
t) or (t, p) (where the edge may have a tuple of
attributes) and p is a member of the set P, and t is a
member of the set T.

M is the initial Marking of the Petri-Net (the initial
assignment of Tokens to Places). We assume that the
Tokens are indistinguishable, and are use to mark the
Petri-Net. While they are typically integer values, they
may also be any type of object.

We note that some Places may have only incoming
(outgoing) arcs corresponding to final (initial) Places.
Similarly, we note that some Transitions may have only
incoming (outgoing) arcs as well.

Formally,

We also define the reachability graph (may be finite or
infinite) as a directed graph whose nodes are the
individual and distinct Markings, and the edges are the
Transitions that inter-connect the Markings. Thus

 RG = (M, T)

where

M is the (possibly infinite) set of Markings,

T is the set of Transitions interconnecting the
Markings M.

Further details about conventional Petri-Nets may be
found in (Murata, T.,1989; Zuraski, R., and Zhou, M.
1994; and Sreenivas, R.S, 2006).

4. THE DYNAMIC PETRI-NET (DPN)
MODEL

In conventional PN, the sets of P, T, and A are FIXED,
and the dynamic behavior is represented ONLY through
the set of Markings, as Tokens move from Place to
Place. The DPN provides the capability of Places,
Transitions, or both to change as a function of time.
These additional behaviors are as indicated below.

4.1 A Conceptual View of the DPN

As indicated above, the essential idea for DPN is that we
will permit the PN structure (that is the sets P, T, and A)
to evolve over time by the addition or deletion of Places
and/or Transitions. In general we term the structure (or
bi-partite graph) of a DPN as a configuration. We
model the action of Place or Transition insertion (or
removal) into a sequence of atomic actions as follows:

1. The creation (or deletion) of a Place or
Transition to/from DPN.

2. The creation, deletion, or modification of the
connections between Places and Transitions.

3. The creation, deletion, or modification of the
connections between Transitions and Places.

We note that in this formulation, it is possible to have a
system that does not completely conform to the
conventional notation of a PN, i.e. we admit that there
may be isolated Places or Transitions that are not
connected to the rest of the DPN. We term these as a
free-Place or a free-Transition. We note that atomic
action 1 must be completed before atomic actions 2
through 3 can take place.

While the above actions represent changes in the DPN
structure, we still must address the issue of what to do
with the Tokens associated with a Place that is affected
by a change. We note that there are several options:

1. If the Place is removed, then either the Tokens
contained within that Place are lost
permanently, or

2. The Tokens are retained under the condition
that that Place may be “reborn” or re-inserted

))(...),(),(),(()(

) x () x (

1 }... ,,,{
1 }... ,,,{

where
),,,(

321

321

321

markinginitialthetmtmtmtmtM

PTTPA

TP
mfixedttttT
nfixedppppP

MATPPN

n

m

n

=

⊆

=

≥=
≥=

=

U
I φ

 3

into the DPN with the same number of Tokens
as when it was removed.

In order to maintain complete flexibility, we admit either
option in our model for DPN.

If either a Place or Transition is removed, then all arcs
incident or exiting that object are also removed. We
require this to prevent “dangling” arcs connecting the
Places and Transitions. In addition, we assume that this
action takes place recursively as well, so that the removal
of a Place may cause one or more Transitions to be
removed as well.

If a Place is created, then either the Place is created
containing zero Tokens, or we may admit that a newly
created Place may be given some initial set of Tokens,
corresponding to an initial state. Again, in order to
maintain complete flexibility, we admit either option in
our model for DPN.

A classic PN does not include any specific reference to
time and are inherently asynchronous in nature.
However, we note that some PN extensions (a Timed
PN) may include explicit time delays on Transition firing
(after being enabled) or explicit time delay on Token
insertion into Places (i.e. a Time PN). In this fashion, the
movement of Tokens and the related Marking vector
changes are in fact time dependent. However in both
cases the structure of the PN, i.e. Places, Transitions, and
Arcs are time invariant.

In a typical operation, it is assumed that one or more
Transitions may execute while the DPN is in
configuration DPN1 and before the configuration change
has taken place. Therefore we need a representation
regarding the DPN behavior before and after the
configuration change. We do this through the use of the
Marking vector (i.e. a vector that indicates the integer
number of Tokens residing in each Place of the PN) as
described below.

4.2 The Universal Set for Places (or Transitions) and

Universal DPN

In order to simplify the DPN model we assume that there
is a bounded “Universal Set” from which all the Places
or Transitions are to be taken for the DPN. What this
essentially means is that we have an upper bound on the
total number of Places, Pmax, and the total number of
Transitions, Tmax, that are possible in the DPN. If any
Place Pi (or Transition Tj) is associated with the DPN
structure, then it is termed an active, alive or enabled
Place (Or Transition); otherwise that Place (or
Transition) is termed to be inactive, dead or disabled.
As noted above, we do permit the Places or Transitions

to “change state”, by becoming active (alive) or inactive
(dead) or vice versa.

Furthermore, we define an active Place or Transition as
being connected (meaning having at least one input or
output) or isolated, implying that the Place or Transition,
while still in the DPN, is not connected to the rest of the
DPN structure. Clearly any isolated Place or Transition
can have no role in the firing or execution (the
movement of Tokens) in a DPN.

4.3 A Functional Representation of DPN

We let DPN represent a Dynamic Petri-Net

 DPN = (P(t), T(t), A(t), M(t))

Where

P(t) = set of Places where the number of Places is a
function of time t,

T(t) = set of Transitions where the number of
Transitions is a function of time,

 A(t) = set of Arcs which is a function of time

M(t) = set of Markings which is a function of time.

More formally,

We represent the DPN configuration change as follows:

DPN1(P,T,A,M) -> DPN2(P’,T’, A’, M’)

where DPN1 is the PN before the configuration change
has taken place, and DPN2 is the PN after the
configuration change has taken place.

We note that DPN1 and DPN2 may have a different
number of Places, Transitions, or interconnections as
indicated above.

In a typical operation, it is assumed that one or more
enabled Transition may execute or fire while the PN is
in either configuration DPN1 or configuration DPN2.

""

)0(;))(...),(,)(,)(()(

))(x)(())(x)(()(

)()(

T)(; }... ,,,{)(
P)(};... ,,,{)(

))(),(),(),((

max321

max321

max321

−∪Ζ⊆

===

⊆

=

≤==
≤==

=

+
j

n

m

n

m

PnntmtmtmtmtM

tPtTtTtPtA

tTtP

tmmtttttT
tnnpppptP

tMtAtTtPDPN

U
I φ

 4

4.4 A Many Sorted Algebra for DPN

In this section a more rigorous setting shall be
established for the DPN using a Many Sorted Algebra.
The Many Sorted Algebra will allow us to precisely
specify as a function of time the behavior of the DPN
including configuration changes.

The Many Sorted Algebraic Model of a DPN is
presented below. We use the standard Many Sorted
Algebraic notation as described in Giardina, C., 2000.
More details regarding the definition of a Many Sorted
Algebra is provided in the above reference.

In particular, we require that the Many Sorted Algebra
representation of DPN include functions involving
elements from Carrier Sets of Sorts, and constraints
involving these functions and elements of Sorts. Figure
1 provides a pictorial representation of the DPN.

The Sorts are: Time (Ti), Transitions (T), Places (P),
Tokens (To), Values (V). The actual elements utilized of
the sorts involved above are called Carrier Sets, and are
denoted by: ATi, AT, AP, ATo, AV respectively. All of
these sets are nonempty. We also assume, as

usual, the set AV is Boolean. The Functions of the Many
Sorted Algebra are:

1. Transition Switch – a function of time that enables or

disenables Transitions and is denoted by g. Hence:
g: ATi x AT ----> AV

where g(t,n) = 1 means that at time t Transition n is
alive and g(t,n) = 0 means that at time t Transition n is
dead.

2. Place Switch –a function of time that enables or

disenables Places is denoted by f. Hence:
f: ATi x AP ----> AV

where f(t,x) = 1 means that at time t Place x is alive
and f(t,x) = 0 means that at time t Place x is dead.

3. PTBus – a function that provides a Token path from a

fixed Place to several Transitions and is denoted by F.
Hence:

F : ATi x AP x AT ----> AV
where F(t,x,n) = 1 means there is a bus path from
Place x to Transition n at time t. (A constraining
equation will allow this to happen only when both
g(t,n) = 1 and f(t,x) = 1), otherwise it must be that
F(t,x,n) = 0 meaning that there is no path.

4. TPBus – a function that provides Token paths from a

given Transition to several Places and is denoted by G.
Hence:

G: ATi x AT x AP ----> AV
where G(t,n,x) = 1 means that there is a bus path from
Transition n to Place x at time t. A constraining
equation will allow this to occur only when both g(t,n)
= 1 and f(t,x) = 1, otherwise it must be that G(t,n,x) =
0 meaning that there is no path.

5. Transition Firing – a function that causes the Tokens

to move from Place to Place and is denoted by H.
Thus:

H: ATi x AP x ATo ----> AV
where for every value of in ATi and for every p in AP
there is exactly one k in ATo such that H(t,p,k) = 1.
This means that Place p has k Tokens. For every other
j in ATo, H(t,p,j) = 0. We note that only enabled
Transitions may fire or execute.

For instance, Figure 2 below illustrates a Dynamic Petri
Net environment. A circle represents a Place and the box
represents a Transition. The outline indicates that the
Place or Transition is alive; its absence indicates that the
Place or Transition is dead. Here, in Figure 2a, Places x
and y as well as Transition n are not alive, but are dead.
Diagrams, b, c, d illustrate the successive enabling of
Place y, then Transition n, and finally Places x.

Places Tokens

Time

Transitions

Values

||
||

|

||

|

|||||||
|||

|

| |||

TPBus

Firing

PTBus Place Switch

Transition
Switch

|

Figure 1. The Many Sorted Algebraic Model for a
DPN System.

a)

b)

c)

x n y

d)
Figure 2. DPN with Alive and Dead Places/
Transitions.

 5

As another example, in Figure 3i, all Transitions and
Places are enabled, indicated by dark lines around the
squares and circles and the solid lines interconnecting the
Places and Transitions. This diagram represents "The
Universal Dynamic Petri Net", meaning that there are no
other possible Places or Transitions allowed to be
created. However, deletion of Places or Transitions is
allowable. Dotted lines indicate removal of the arc
connecting a Place or Transition.

Figure 3. Dynamic Petri Net with (Recursive) Place /
Transition Removal

In the example above, if Place b dies, as indicated by
dotted lines around this Place, and illustrated in Figure
3ii then the TPBus from Transition 3 is removed as well
as the PTBus connecting Transition 2. Moreover, if
Transition 2 is then removed, the TPBus into Place a and

the PTBus from Place c is also removed. The final result
is illustrated in Figure3iii.

4.5 DPN Marking and Reachability Tree

The Marking of a PN is typically defined as a fixed size
vector, whose size is determined by the number of Places
in the PN. The elements of the vector are typically
positive integers. However, in our case, the Marking
must represent the fact that Places may be added or
deleted. Hence, the Marking vector length is fixed at
|Pmax|. We also need a way to represent Places that are
not alive in the DPN. We use the symbol "-" in the
Marking vector to indicate that that particular Place is
inactive (or dead) and not involved with the DPN
activities. As previously mentioned, the resident Tokens
in the Places that are deleted may be either lost or
retained for possible re-introduction to the DPN that the
associated Place is made active again.

Figure 4. Dynamic Petri Net Marking Under Place
Removal

In Figure 4i the same DPN is given as that illustrated in
Figure 3i. However, now the Tokens have been assigned

a b2

31
c

e4d
i

a b2

31
c

e4d
ii

a b2

31
c

e4d
iii

5 2

3

2 4

a b2

31
c

e4d
a b c d e

(5 2 3 2 4)
i

5 2

3

2 4

a b2

31
c

e4d
a b c d e

(5 – 3 2 4)
ii

 6

to the Places. This is called the Marking of the DPN and
is indicated by placing a non negative integer within the
circle representing the respective Place. It is again
illustrated as a Marking vector whose tuple provides the
number of Tokens assigned to the respective Places.
Indeed, the five tuple: (5 2 3 2 4) is shown in Figure 4i.

Figure 4ii illustrates the tuple assignment after Place b
died. This assignment is used in subsequent operations
involving the network. For instance, since all the Places
in the above diagram have a non zero number of Tokens,
any of the Transitions 1, 3, or 4 can fire. The usual
method of illustrating the firing is given using a tree
structure below in Figure 5. The DPN illustrated in the
top of this diagram is precisely the same as the one
shown in Figure 4ii.

Figure 5 illustrates the Reachability Tree and the "final"
Token count per each Place. When Transition 1, or
Transition 3 or Transition 4 fire, the Token count in each
Place for each possible Transition execution is shown in
Figure 5.

Figure 5 Reachability Tree for a DPN

5. APPLICATION OF DPN TO A
TOPOLOGY REPRESENTATION

5.1 Background – Using the Directed Graph (DG)

Model

It is well known that packet communication network
topology is typically represented by directed graphs
(DG). Under this scheme, the node of the graph
represents the packet switch (or packet radio), while the
arc (or edge) of the graph represents the communication
channel between two nodes or radios. As packets move

through the network, they traverse from node to node
through the connecting edges or arcs.

In order to provide a concrete example, we provide
Figure 6, as the traditional directed graph model of the
broadcast radio network. In that figure, we show 5 nodes,
represented by the circles, and 6 edges, as represented by
the directed arcs. Thus G (V, E) is the directed graph for
the network, where V is the set of nodes, and E is the set
of edges. We call this model as the DG model, or
directed graph model. However, since each edge is
associated with a single source node, and a single
destination node, we cannot readily distinguish a point-
to-point channel from a broadcast radio one.

In the figure, we desire a broadcast radio channel from
node 1 to nodes 2, 3, and 4 as the set of edges e1, e2, and
e3. Thus, a single packet from node 1 would have to be
associated with a packet flowing simultaneously on the
three edges e1, e2, and e3. Clearly this is not easily
represented by the directed graph model.

Figure 6. Directed graph model of a network

There is another difficulty with the simple graph
theoretic representation for the broadcast radio
environment, and that is the potential for interference.
Specifically, when one radio transmits a packet, all other
radios within its one hop communication range are
capable of receiving it. If one of these one hop neighbors
is also receiving a packet from a third transmitter, then
interference will result, and neither packet may be
correctly received. This interference which is a result of
a node receiving two or more simultaneous transmissions
is not easily represented with a simple directed graph
model. In Figure 7, we assume that nodes 2, 3 and 4 have
packets to be transmitted, and they collide at the
receiving node, node 5. This is represented in Figure 7
pictorially, although we cannot represent this
mathematically.

Figure 7. Packet collision at node 5

5

3

2 4

a

31

e4d
a b c d e

(5 - 3 2 4)

c

5

4

2 3

31

e4d

c
5

2

3 5

31

e4d

c
4

2

2 4

31

e4d

c

(4 - 2 2 4) (5 - 4 2 3) (5 - 2 3 5)

1
3

4

a a a

2

3

4

1 5

V={1, 2, 3, 4, 5}

e1

e2
e6e3

e5

e4

E={e1, e2, e3, e4, e5, e6}

2

3

4

1 5

 7

5.2 The DPN Model

In Figure 8, we show the equivalent DPN model of the
network shown in Figure 6. Here, the nodes in the DG
model are replaced one-to-one (i.e. in one-to-one
correspondence) by the Places in the DPN. The broadcast
radio channel is modeled as DPN transition, where the
in-arc is an arc from the source Place to the Transition,
and a set of out-arcs from the Transition leads to each of
the one-hop neighbors of the source Place. Thus, the
DPN model is very similar to the DG model, with the
major difference being the replacement of the arcs by a
transition.

Figure 8. DPN model of a network.

The broadcast nature of the channel can readily be
demonstrated as follows. We represent a packet as a
Token that residues in a Place in the DPN. With as single
Token in the Place P1, the Transition T1 is enabled and
capable of firing or being executed. When T1 does fire or
execute, then the single token in Place P1 is removed,
and simultaneously a token is deposited in each Place P2,
P3, and P4. With the simultaneous creation of a Token in
each of the receiving Places, we can accurately represent
the simultaneous reception of an identical packet at

each receiving radio node. This is shown at Figure 9,

prior to the packet transmission, while Figure 10
indicates the simultaneous packet reception at nodes (or
Places) P2, P3, and P4. As before, the integers inside the
Place represent the number of Tokens, or packets in that
Place.

Using the DPN model, we can readily model effects of
packet collisions or interference. In Figure 10, we
assume that Places P2, P3, and P4 each have a packet to
be transmitted. Thus, Transition T2, T3, and T4 are ALL
enabled (capable of executing). If during a single
timeslot or execution period they all did fire, then each of
the tokens in P2, P3, and P4 would be removed, and three
Tokens would be therefore deposited in Place P5. Since
Place P5 initially had zero Tokens and contained three
new tokens after the Transitions fired, we can readily see
that a (multiple) packet collision has occurred, as shown
in Figure 11.

We can also use the DPN to represent the finite error rate
of packet channels, by associating with each arc exiting a
Transition, a non-negative value that could be used to
represent the probability of a packet loss or bit error.
Space limitations prevent us from further presentation of
this capability.

In addition, we can also use the DPN to represent node
mobility, or node destruction. To represent a node being
lost, destroyed, or inoperative, we simply remove that
Place from the DPN, as well as any entering or exiting
arcs. If the resulting configuration of the DPN contains
any Transitions that have only inputs or outputs or
neither, then it should also be removed from the DPN
configuration. The loss of a communications link is
similarly represented by removal of the associated arc.

CONCLUSIONS/BENEFIT TO THE
WARFIGHTER

We have presented an extension to Petri-Nets that can be
used to model dynamic system behavior by structural
changes in the PN. A mathematical formalization was
presented that highlights this new behavior in both
traditional as well as Many-Sorted Algebra form. Finally,
a simple model that represents the broadcast nature of the

1

0 0
T1

T2

T3

T4

P1

P2

P3

P4
1

1

P5

Figure 10. Ad hoc network after P1 transmits the
packet.

0

1 0
T1

T2

T3

T4

P1

P2

P3

P4
0

0

P5

Figure 9. Ad hoc network with P1 ready to transmit.

0

1 0
T1

T2

T3

T4

Point-to-PointBroadcast
Radio

Channel

P1

P2

P3

P4
0

0

P5

0

0 3
T1

T2

T3

T4

P1

P3

P4
0

0
P2

P5

Figure 11. Ad hoc network showing packet collision
at node (or Place) P5 .

 8

radio channel was also presented.

It is well known that the Army’s Future Combat System
(FCS) relies heavily on ad hoc radio network
communication. The precise and accurate mathematical
representation of the communication network
environment is critical to the proper and reliable design
of both the communication network protocols as well as
the network performance analysis as indicated by the
recent research in (Network Council 2005). In that
report, the modeling, simulation, testing, and prototyping
of large networks is identified as a critical research area.
It is hoped that this earlier research can be continued and
contribute to the body of knowledge that can be used by
the Army in the design, analysis and testing of large ad
hoc packet networks that are and continue to be critical
to the successful conduct of military operations.

ACKNOWLEDGEMENTS

The author wishes to express his appreciation to Dr.
Charles Giardina, of Stevens Institute of Technology and
BAE Systems for his kind review and constructive
comments on this paper. The author also wishes to thank
Mr. David Yee for his comments and proofreading of
this paper.

REFERENCES:

1. Giardina, C., 2000; Many-Sorted Algebra for Image
Processing, Proceedings of MILCOM 2000.
2. Murata, T.,1989; Petri-Nets: Properties, Analysis and
Applications , Proceedings of IEEE Vol. 77, No. 4, April
1989, pages 541-580.
3. National Research Council, 2005; “Network Science”
, Committee on Network Science for Future Army
Applications, Board on Army Science and Technology,
Division on Engineering and Physical Sciences, The
National Academies Press, 2005.
4. Sreenivas, R.S. 2006; “On Minimal Representations
of Petri-Net Languages”, IEEE Transactions on
Automatic Control, Vol. 51, No. 5, May 2006, pages
799-804.
5. Zuraski, R., and Zhou, M. 1994; Petri-Nets and
Industrial Applications”, A Tutorial, IEEE Transactions
on Industrial Electronics, Vol. 41, No. 6, December
1994, pages 567-583.

